Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608141

RESUMO

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Assuntos
Óxido Nitroso , Óxido Nitroso/metabolismo , Bactérias/metabolismo , Oxirredutases/metabolismo , Desnitrificação
2.
Chemosphere ; 255: 126951, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417512

RESUMO

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Assuntos
Sedimentos Geológicos/química , Urânio/química , Poluentes Radioativos da Água/química , Bactérias , Água Subterrânea/química , Nitratos/análise , Compostos Orgânicos , Sulfatos/análise , Urânio/análise , Poluentes Radioativos da Água/análise
3.
Ground Water ; 57(2): 292-302, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656383

RESUMO

The breakthrough curve obtained from a single-well push-pull test can be adjusted to account for dilution of the injection fluid in the aquifer fluid. The dilution-adjusted breakthrough curve can be analyzed to estimate the reaction rate of a solute. The conventional dilution-adjusted method assumes that the ratios of the concentrations of the nonreactive and reactive solutes in the injection fluid vs. the aquifer fluid are equal. If this assumption is invalid, the conventional method will generate inaccurate breakthrough curves and may lead to erroneous conclusions regarding the reactivity of a solute. In this study, a new method that generates a dilution-adjusted breakthrough curve was theoretically developed to account for any possible combination of nonreactive and reactive solute concentrations in the injection and aquifer fluids. The newly developed method was applied to a field-based data set and was shown to generate more accurate dilution-adjusted breakthrough curves. The improved dilution-adjusted method presented here is simple, makes no assumptions regarding the concentrations of the nonreactive and reactive solutes in the injection and aquifer fluids, and easily allows for estimating reaction rates during push-pull tests.


Assuntos
Água Subterrânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA